antonylee Posted February 13, 2020 Report Share Posted February 13, 2020 Over 2N-3♦; 3♥ (nearly forced), we currently play 3♠* = asking whether opener has 2♥ (3N) or 3+♥ (4♥); 3N = 4♠5♥ NF (if slammish, a 4♠5♥ responder starts with 3♠ instead), together with (some kind of) muppet Stayman.The downside is offering the chance of a lead-director double (or lack thereof) over 3♠; in exchange, we get to right-side 4♠ when that's the right contract, and can also distinguish between 5♥4m (directly bids the minor over 3♥) and 5♥5m (goes through 3♠* first) (if opener has no fit) -- so overall we quite like this.However, here in France, it seems extremely common, including among good players, to instead play fitted transfer acceptances, i.e. 2N-3♦; 3♥ = fit, 3N = no fit. You lose the possibility to signoff in 3♥ with weak hands, but instead get a full cuebidding level between 3♥ and 4♥ on slam hands.In our system, over 3♠*, opener could also choose to cue just to cater for the possibility that responder is slammish (so 4m = minor cue, the spade cue is not available but such is life), but that seems just like gratuitously leaking info to the opps most of the time. Always bidding 4♣ with a fit only leaves one intermediate non-signoff (4♦) to responder so that doesn't seem to buy much either. Any thoughts on the best way to use the half-level (4♣, 4♦, 4♥) that we have available with fitted hands after 2N-3♦; 3♥-3♠*? Quote Link to comment Share on other sites More sharing options...
Cyberyeti Posted February 13, 2020 Report Share Posted February 13, 2020 Why do you play 3♥ nearly forced ? We play new suit = Hxx♥/HHxxx in the suit bid H=AKQ, 3N/4♥ as min/max with 4♥ (you can argue which way round to play these) which gets rid of a lot of the fit hands straight up. Quote Link to comment Share on other sites More sharing options...
antonylee Posted February 13, 2020 Author Report Share Posted February 13, 2020 Mostly because that's "standard" and we never discussed other superaccepts...We actually play 2N-3♦; 3♠ = 5233 exactly, which helps when responder is 3♠5♥ (transfer followups).Do you think the wrongsiding of games after a superaccept at 4(M-1) is worth the few (well, I don't have a good intuition of how many) additional slams you get to? Quote Link to comment Share on other sites More sharing options...
Cyberyeti Posted February 13, 2020 Report Share Posted February 13, 2020 Mostly because that's "standard" and we never discussed other superaccepts...We actually play 2N-3♦; 3♠ = 5233 exactly, which helps when responder is 3♠5♥ (transfer followups).Do you think the wrongsiding of games after a superaccept at 4(M-1) is worth the few (well, I don't have a good intuition of how many) additional slams you get to? We haven't had an issue with wrongsiding games in this type of auction, although it could happen. Quote Link to comment Share on other sites More sharing options...
Povratnik Posted February 14, 2020 Report Share Posted February 14, 2020 Maybe it's off topic, but I am curious about your base* criteria. Tried to deduct it, but failed. * base criteria:With what kind of hand you bid 3♣ and with what kind of hand you bid 3♦ (Muppet discovers any major fit and it is always played by right hand. Obviously it's something about slam possibilities, but I failed to grasp exactly what...) Could you give some example hands? Quote Link to comment Share on other sites More sharing options...
antonylee Posted February 15, 2020 Author Report Share Posted February 15, 2020 3♣: 1 or both 4cM, or 5♠4♥... 3♦: <4♥, <5♠... ... 3♥: 4♠... ... 3♠: puppet to 3N -- to play, or slammish 5♠4♥, or others.... ... 3N: 5♠4♥, NF... 3♥: 4+♥... ... 3♠: "do you have 4 or 5♥?" (actually this has problems similar to the originally given auction, do you bid 4♥ with 5 or something else?)... ... 3N: to play... 3♠: 5♠ 3♦: transfer, possibly 4♠ as well... 3♥: mostly forced... ... 3♠: "do you have 2 or 3♥?" -- then over 3N (=2♥): 4m=55, 4♥=5♠5♥, 4♠=4♠5♥ but too strong for 3N.... ... 3N: 5♥4♠, NF The general structure can be remembered as "After 3♦ by either player, invert the meanings of 3♠ and 3N" (a trick taught to me by my former partner). Quote Link to comment Share on other sites More sharing options...
Povratnik Posted February 16, 2020 Report Share Posted February 16, 2020 So your choice has nothing with strength and slam interest, it's based on distribution exclusively... It's pretty complicated, I need to think a bit. For now, I see an obvious flaw - 4♠ is frequently played by wrong hand. Don't yet see a benefit that would make up for that. An example hand would be useful... You don't separately mention distributions with 5♥3♠ and 3♥5♠. It seems 5♥3♠ is included in 3♦, but I'm not sure whether is 3♥5♠ included in 3♣ or 3♥... Quote Link to comment Share on other sites More sharing options...
antonylee Posted February 17, 2020 Author Report Share Posted February 17, 2020 4♠ is played from the wrong hand only with 5♠5♥ where there's no ♥ fit, and with slam-forcing 4♠5♥, so overall not so often.(53)Ms either way are handled by transfering to the long major; opener relay-breaks at 3(M+1) with 2M5oM and responder's next bid is a transfer. So e.g. 2N-3♥; 3N! now P=to play, 4♣=♦, 4♦=♥, 4♥=♠, 4♠=♣ (probably it would be best to play e.g. 4♣=♣ and 4♠+ = various ♦ hands, e.g. "♦, responding to a hypothetical 4♥ kickback" but these are exceptionally rare and not really worth the memory load). Quote Link to comment Share on other sites More sharing options...
Cyberyeti Posted February 17, 2020 Report Share Posted February 17, 2020 4♠ is played from the wrong hand only with 5♠5♥ where there's no ♥ fit, and with slam-forcing 4♠5♥, so overall not so often.(53)Ms either way are handled by transfering to the long major; opener relay-breaks at 3(M+1) with 2M5oM and responder's next bid is a transfer. So e.g. 2N-3♥; 3N! now P=to play, 4♣=♦, 4♦=♥, 4♥=♠, 4♠=♣ (probably it would be best to play e.g. 4♣=♣ and 4♠+ = various ♦ hands, e.g. "♦, responding to a hypothetical 4♥ kickback" but these are exceptionally rare and not really worth the memory load). What do you play 2N-4m as ? we put all the 5-5 majors where you're either to-play or slamgoing into 4♦, if you play texas transfers you can use 4♣. This rightsides many of the 5-5s Quote Link to comment Share on other sites More sharing options...
antonylee Posted February 20, 2020 Author Report Share Posted February 20, 2020 We play 4red = transfers ("standard american"), 4♣ = 5♠5m (4♦ = what's your minor, 4♠ = fit) -- we "always" distinguish 5M5m from 5M4m by directly bidding the minor over the transfer with 54, using 2N-4♣ to show 5♠5m, and 2N-3♦; 3♥-3♠*; 3N(misfit)-4m to show 5♥5m (if opener has no ♥ fit). Quote Link to comment Share on other sites More sharing options...
Zelandakh Posted February 20, 2020 Report Share Posted February 20, 2020 2NT==3♣ = ask... - 3♦ = 4 hearts and/or 3-4 spades... - ... - 3♥ = asks if 4 spades... - ... - ... - 3♠ = 4 spades... - ... - ... - ... - 3N = to play... - ... - ... - ... - 4m = nat, SI... - ... - ... - ... - 4♥ = slam try agreeing spades... - ... - ... - 3N = <4 spades... - ... - ... - ... - 4m = nat, SI... - ... - 3♠ = shows 4 hearts, denies 4 spades... - ... - ... - 3N = <4 hearts... - ... - ... - ... - 4m = nat, SI... - ... - ... - others = 4 hearts... - ... - 3N = 4 hearts, 4 spades, NF... - ... - 4♣ = 4+ hearts, 4+ spades, SI... - ... - ... - 4♦ = 3 spades, <4 hearts... - ... - ... - ... - 4♥ = 5+ spades... - ... - ... - ... - 4♠ = 4 spades, 5+ hearts... - ... - ... - ... - ... - 4N = 2 hearts, min... - ... - ... - ... - ... - 5N = 2 hearts, max... - ... - ... - ... - ... - others = 3 hearts... - ... - ... - 4♥ = 4 hearts, decline slam try... - ... - ... - 4♠ = 4 spades, decline slam try... - ... - ... - 4N = 4 spades, accept slam try... - ... - ... - ... - 5♣ = RKCB... - ... - ... - others = 4 hearts, accept slam try... - ... - 4♦ = 5+ spades, 4+ hearts... - ... - 4♥ = 5+ clubs, 4 diamonds, SI... - ... - 4♠ = 5+ diamonds, 4 clubs, SI... - 3♥ = 5 hearts... - ... - 3♠ = agrees hearts, SI... - ... - 4m = nat, SI... - 3♠ = 5 spades... - ... - 4m = nat, SI... - ... - 4♥ = slam try agreeing spades... - 3N = <4 hearts, <3 spades... - ... - 4♣ = 4+ clubs, SI... - ... - 4red = puppet to 4M... - ... - 4♠ = 4+ diamonds, SI3♦ = 5+ hearts... - 3♥ = 2-3 hearts... - ... - 3♠ = cog (3NT/4♥); or 4+ clubs; or strong slam try in hearts... - ... - ... - 3N = usually 2 hearts... - ... - ... - ... - 4♣ = 4 clubs... - ... - ... - ... - ... - 4♦ = <4 clubs... - ... - ... - ... - ... - others agree clubs... - ... - ... - ... - 4♦ = 5+ clubs... - ... - ... - ... - 4♥ = strong slam try in hearts... - ... - ... - 4♣ = 3+ hearts, 4+ clubs... - ... - ... - ... - 4♦ = puppet to 4♥... - ... - ... - ... - 4♥ = strong slam try in hearts... - ... - ... - ... - others show 4+ clubs... - ... - ... - 4♦ = 3+ hearts, <4 clubs, accept slam try... - ... - ... - ... - 4♥ = to play... - ... - ... - 4♥ = 3+ hearts, <4 clubs, decline slam try... - ... - 3N = 4 spades, cog... - ... - 4♣ = 4+ diamonds... - ... - 4♦ = 5+ spades... - ... - 4♥ = mild slam try... - 3♠ = 4-5 hearts... - ... - 4♦ = puppet to 4♥... - ... - 3N/4♣/4♥ = control bids... - 3N = 2 hearts, 5 spades... - ... - 4♣ = 5+ clubs, SI... - ... - 4red = puppet to 4M... - ... - 4♠ = 5+ diamonds, SI3♥ = 5+ spades... - 3♠... - ... - 3N = cog... - ... - 4m = nat, 4+ suit... - ... - 4♥ = strong slam try in spades... - ... - 4♠ = mild slam try... - 3N = 2 spades, 5 hearts... - ... - 4♣ = 5+ clubs, SI... - ... - 4red = puppet to 4M... - ... - 4♠ = 5+ diamonds, SI3♠ = 5+ clubs, SI... - 3N = no club fit... - ... - 4♣ = 6+ clubs... - ... - 4♦ = 5+ diamonds, no void... - ... - 4M = 5+ diamonds, void in M... - ... - 4N = RKCB for diamonds with spade void... - others show club fit3N = to play4♣ = 6+ diamonds4red = puppet to 4M4♠ = Baron range ask4N = puppet to 5♣5♣ = puppet to 5♦ Quote Link to comment Share on other sites More sharing options...
antonylee Posted February 21, 2020 Author Report Share Posted February 21, 2020 Ah, swapping 3s and 3n over 3d is a nice and simple idea, thanks :) Quote Link to comment Share on other sites More sharing options...
Zelandakh Posted February 22, 2020 Report Share Posted February 22, 2020 Ah, swapping 3s and 3n over 3d is a nice and simple idea, thanks :)Glad something in there was useful to you. :) I have one more tip for you as well. If you do decide to go with that idea then I would recommend doing the same in your 1NT structure. That makes it much less likely that it will be forgotten. Quote Link to comment Share on other sites More sharing options...
antonylee Posted February 22, 2020 Author Report Share Posted February 22, 2020 Indeed, memory is particularly an issue here because these are rather rare auctions.I'm not sure things are that easily adaptable for us to 1N openings, though, given that we play a structure based on 1N-2r; 2M-2N* = forcing 5431s which we quite like as well (and is quite common in France). Quote Link to comment Share on other sites More sharing options...
nullve Posted February 29, 2020 Report Share Posted February 29, 2020 Suppose 1) 2N is balanced in the classical sense of promising either (4333), (4432) or (5332)) and 2) 2N-3♦; ?: 3♥ = 4-S2H (and therefore 4+m3+Om, because of 1))...3♠ = PUP 3N...3N = 4S5H, CoG...4♣+ = hands with 3-S5H4+m or 2533 shape only3♠(or 3N) = 5233rest = 3+ H. Then 2N-3♦; 3♥-?: (...)4♣ = slam interest, 5+H3+D3+C...4♦+ = Structure4♦+ = slam interest, 3-S5+H4+m2-Om, Structure where Structure is given by 4♦ = either 4 C or (5+ C and even KC(♣)) ...4♥ = 3 C......4♠ = 5+ C, even KC(♣).........4N = ♣Q ask.........(...)......4N = to play......5♣(by 3♦ bidder) = 6+H4C, even KC(♥).........4♦ = ♥Q ask.........(...)......5♦(by 3♦ bidder) = 6+H4C, odd KC(♥), no ♥Q......5♥(by 3♦ bidder) = 6+H4C, odd KC(♥), ♥Q...4♠ = 4+ C, even KC(♣)......4N = ♣Q ask......(...)...4N = 4+ C, odd KC(♣), no ♣ Q...5♣ = 4+ C, odd KC(♣), TQ4♥ = either 5-H4D or (5+ D and even KC(♦))...4♠ = 3 D......4N = to play......5♣ = 5+ D, even KC(♦), no ♦Q......5♦ = 5+ D, even KC(♦), ♦Q......(...)...4N = 4+ D, even KC(♦)......5♣ = ♦Q ask......(...)...5♣ = 4+ D, odd KC(♦), no ♦Q...5♦ = 4+ D, odd KC(♦), ♦Q4♠ = 5+ C, odd KC(♣)...4N = ♣Q ask...(...)4N = 5+ D, odd KC(♦)...5♣ = ♦Q ask...(...)5♣(by 3♦ bidder) = 6+H4D, even KC(♥)...5♦ = ♥Q ask...(...)5♦(by 3♦ bidder) = 6+H4D, odd KC(♥), no ♥Q5♥(by 3♦ bidder) = 6+H4D, odd KC(♥), ♥Q, might be a way to exchange, at a reasonably safe level, almost all relevant inforrmation about minor suit lengths and key cards, in the case where Opener is 4-S2H and Responder either 3-S5H4+m or 2533. Obviously, Structure can be generalised to the case where Opener is 2M4-OM and Responder either 5+M3-OM4+m or 5M233. --- Fatal flaws anywhere? Added, starting 17 April 2021: Idea for a new 2N structure with very different responses other than 3N: 2N-?: 3♣ = 3+S3+H OR SI, either (4432) or (4441)3♦ = 2-S3+H3♥ = 4+S2-H3♠ = 3S2-H3N = to play4♣+ = 2-S2-H, SI 2N-3♣; ?: 3♦ = 3-4S3-4H...3♥ = 4+S3H OR SI, relay......3♠ = 3S4H......3N = 3S3H......4♣ = 4324 (=> 4♦ = PKC(♣))......4♦ = 4342 (=> 4♥ = PKC(♦))......4♥ = 44(32)...3♠ = 3S4+H...3N = 3S3H...4♣ = 33(43), SI...4♦ = SI, either 3325 or (6+ C, even KC(♣))...4♥ = SI, either 3352 or (6+ D, even KC(♦))...etc.3♥ = 2S3-4H...3♠ = 4+ H or (SI, relay)......3N = 2S3H......4♣ = 2434 (=> 4♦ = PKC(♣))......4♦ = 2443 (=> 4♠ = PKC(♦))...(...)3♠ = 4S2H3N = 3S2H...P = allowed...4♣ = SI relay......4♦ = 3244 or (3235 and even KC(♣))......4♥ = 3253......4♠ = 3235 and odd KC(♣)...4♦ = SI, either 5 C or (6+ C and even KC(♣)) OR SO in H......4♥ = forced...4♥ = SI, either 5 D or (6+ D and even KC(♦)) OR SO in S......4♠ = forced...4♠ = SI, 6+ C and odd KC(♣)...4N = SI, 6+ D and odd KC(♦)4♣ = 5 H...4N = to play (was SI with either 4144 or 2H(443))4♦ = 5 S...4N = to play (was SI with either 1444 or 2S(443)) 2N-3♦; ?: 3♥ = 3 H...3♠ = 2-S3H, SI......3N = forced.........4♣ = ?.........4♦ = 5 C or (6+ C, even KC(♣)).........4♥ = 5 D or (6+ D, even KC(♦)).........etc....3N = 2-S3-4H, to play...4♣+ = 5+ H OR 2-S4+H, SI (compare 2N-3♥; 3♠-4♣+)3♠ = 4 H...3N = 2-S3H, NF3N = 2 H4♣+ = 5 H 2N-3♥; ?: 3♠ = 3 S...3N = 4S2-H, to play...4♣+ = 5+ S3N = 2 S4♣+ = 4-5 S 2N-3♠; ?: 3N = 2-4 S...4♣ = ?...4♦ = 5 C or (6+ C, even KC(♣)...4♥ = 5 D or (6+ D, even KC((♦))...etc.4♣+ = 5 S 100 boards where North has 23 (walrus) hcp and strictly balanced shape: 1. A 9 5 4 2 K 7 3 Q J T 8 6 A K T 6 J 5 3 Q 8 4 2 9 7 A K T 4 8 7 6 5 3 Q J 9 2 A J T 8 2 K Q 6 5 4 9 7 3 2N-(P)-3C-(P) 3H-(P)-3S-(P) 4C+ 2. A Q 4 K 9 8 7 5 3 J T 6 2 A Q J T 8 5 4 3 K 9 6 7 2 J 3 2 Q T 9 8 5 A K 7 6 4 A K Q 7 2 8 6 4 J 5 3 T 9 2N-(P)-3D-(P) 3H-(P)-3N-(P) P-(P) 3. K Q J 8 2 A T 3 7 5 9 6 4 A K 9 8 5 2 7 3 Q J T 6 4 A 6 K J 8 7 4 Q T 9 5 3 2 - A Q 2 4 3 T 9 8 K J 7 6 5 2N-(P)-3N-(P) P-(P) 4. A K 3 J 8 6 5 2 Q T 9 7 4 A K T 5 9 4 3 J 8 7 Q 6 2 K Q J 5 T 9 7 4 2 A 8 6 3 K 9 5 A T 4 3 Q 8 7 6 J 2 2N-(P)-3C-(P) 3H-(P)-? 5. A 6 2 Q 5 K J T 9 4 8 7 3 A K Q 2 7 4 T 9 6 3 J 8 5 A K J 2 8 7 6 3 4 Q T 9 5 Q 9 J 6 5 3 2 A K 7 T 8 4 2N-(P)-3C-(P) 3D-(P)-3H-(P) 3S-(P)-4C-(P) 6. K Q 9 J 5 4 A T 8 7 2 6 3 Q 5 A J T 9 3 K 8 7 6 4 2 A K T 8 7 Q 9 5 J 6 4 3 2 A K Q 7 3 J 8 6 5 T 9 4 2 2N-(P)-3H-(P) 3S-(P)-4C-(P) 7. A K T 9 3 5 4 2 Q J 8 7 6 A 7 6 J 4 K Q T 8 5 2 9 3 K Q J 8 T 9 7 6 4 2 3 A 5 A Q 3 K 8 7 9 6 4 J T 5 2 2N-(P)-3C-(P) 3D-(P)-3S-(P) 3N-(P)-4C-(P) 8. A J 9 4 8 7 3 K Q T 6 5 2 A K 7 6 J 3 2 T 9 8 5 Q 4 K Q 7 A T 8 J 9 6 5 4 3 2 A Q K T 9 8 7 5 4 3 J 6 2 2N-(P)-3D-(P) 3S-(P)-4C-(P) 9. A K J 8 7 3 Q T 9 5 4 6 2 A K J T 7 2 8 6 5 4 Q 9 3 K Q 6 2 J 9 8 T 7 3 A 5 4 Q J 4 3 T 7 6 9 A K 8 5 2 2N-(P)-3C-(P) 3N-(P)-4H-(P) 4S-(P)-P-(P) 10. K 8 Q 7 6 A J T 9 3 5 4 2 A K Q 7 9 6 5 J 4 3 T 8 2 K Q 8 5 9 2 A 4 J T 7 6 3 A Q 9 K 8 6 5 4 J T 7 3 2 2N-(P)-3C-(P) 3H-(P)-3S-(P) 4C+ 11. A K 3 - J T 6 Q 9 8 7 5 4 2 Q 5 K J 8 6 2 9 4 3 A T 7 A T 2 K 9 7 6 Q 5 4 3 J 8 A K Q J 8 9 5 4 2 T 7 3 6 2N-(P)-3N-(P) P-(P) 12. A K Q J 9 5 3 8 4 2 T 7 6 A Q J 9 7 3 8 6 5 4 K T 2 J 3 K 9 6 5 Q T 8 7 2 A 4 K Q 7 5 J T 6 9 A 8 4 3 2 2N-(P)-3C-(P) 3D-(P)-3S-(P) 3N-(P)-P-(P) 13. Q J A 6 4 3 K 8 7 2 T 9 5 A K 6 3 2 T 9 5 4 Q J 8 7 A 7 2 T 6 5 4 Q 9 K J 8 3 A K Q T 7 5 4 2 J 9 6 8 3 2N-(P)-3C-(P) 3H-(P)-3S-(P) 3N-(P)-P-(P) 14. K Q 9 4 7 3 A T 2 J 8 6 5 A K 8 5 T 7 2 Q 6 4 J 9 3 A 8 6 K 9 4 Q J 5 2 T 7 3 A K 9 7 6 3 2 J T 4 Q 8 5 2N-(P)-3C-(P) 3D-(P)-3H-(P) 4C-(P)-6N-(P) P-(P) 15. A K T J 3 Q 9 7 6 5 8 4 2 A 6 K Q 9 3 2 T 7 5 J 8 4 A K T 9 6 Q 4 8 7 2 J 5 3 K Q T A 8 6 2 J 7 9 5 4 3 2N-(P)-3C-(P) 3N-(P)-? 16. A Q 2 J 9 7 5 K 8 6 4 3 T J 7 5 A 4 6 3 2 K Q T 9 8 A K 7 T 8 5 4 2 Q 6 J 9 3 A K Q 8 7 2 6 5 4 J T 9 3 2N-(P)-3C-(P) 3D-(P)-3H-(P) 3N-(P)-4C-(P) 17. Q 9 4 K 7 6 A T 3 2 J 8 5 A K Q 7 J 8 4 3 T 9 6 5 2 K Q 5 A 9 8 7 6 J T 3 2 4 A K 8 Q T 7 5 4 3 J 9 6 2 2N-(P)-3C-(P) 3D-(P)-3H-(P) 3S-(P)-3N-(P) P-(P) 18. A K T J 8 6 4 5 3 2 Q 9 7 A J 5 K 3 2 Q 7 6 T 9 8 4 A K J 9 5 8 6 4 Q T 3 7 2 K 5 9 6 4 A Q 8 3 J T 7 2 2N-(P)-3C-(P) 3D-(P)-4C-(P) 19. A K 8 J T Q 9 6 3 7 5 4 2 A K Q 9 T 8 7 4 J 6 5 2 3 A 8 3 Q T 9 7 2 K J 6 5 4 K 8 4 A J 3 Q T 9 7 6 5 2 2N-(P)-3C-(P) 3D-(P)-3H-(P) 3S-(P)-4C-(P) 20. A 5 K T 9 7 4 6 3 2 Q J 8 K T 4 A J 9 8 7 6 5 2 Q 3 A K Q T 8 9 6 2 - J 7 5 4 3 A Q J T 5 4 3 9 7 2 K 8 6 2N-(P)-3C-(P) 3H-(P)-? 21. A K Q 7 T J 9 6 5 4 3 2 8 A J 9 7 Q K T 8 6 5 4 3 2 A J 5 K 9 8 7 6 4 - Q T 3 2 A 6 K Q 8 7 2 J 9 5 3 T 4 2N-(P)-3H-(P) 4C+ 22. A K Q 7 4 9 6 2 J T 8 5 3 A K J 6 4 Q T 8 2 9 7 5 3 J 4 2 T 8 6 3 K 7 A Q 9 5 K Q J 9 3 2 T 8 7 5 A 6 4 2N-(P)-3C-(P) 4D-(P)-? 23. A K J 3 T 8 5 - Q 9 7 6 4 2 A Q T 2 3 K J 9 8 7 6 5 4 - K Q 6 T 7 5 3 2 A 8 4 J 9 A T Q J 9 6 K 2 8 7 5 4 3 2N-(P)-3D-(P) 3S-(P)-4C-(P) 24. A K 3 4 9 8 7 6 2 Q J T 5 K 6 A T 3 2 Q 8 7 5 4 J 9 A K J T 9 7 6 5 3 2 Q 8 4 A J 7 3 2 K 9 6 4 Q T 8 5 2N-(P)-3C-(P) 3N-(P)-? 25. A K Q 9 7 6 T 8 4 J 5 3 2 K 8 3 A Q 9 6 7 4 2 J T 5 K 2 J 9 8 5 Q T 7 6 A 4 3 A K J T 6 Q 7 9 8 3 5 4 2 2N-(P)-3N-(P) P-(P) 26. A K T 7 9 Q 6 5 3 2 J 8 4 A K J 4 Q T 9 8 6 5 7 3 2 A K 2 J T 8 7 5 4 Q 6 9 3 J 7 K T 4 A Q 8 9 6 5 3 2 2N-(P)-3C-(P) 3D-(P)-3H-(P) 4C+ 27. A K 4 5 3 2 Q 9 J T 8 7 6 A K T Q J 9 8 7 6 4 2 3 5 A 8 Q K J T 9 6 5 4 7 3 2 K Q T 9 3 4 8 6 2 A J 7 5 2N-(P)-4N-(P) 5C-(P)-? 28. A K Q J 4 9 6 8 7 5 3 T 2 A J 9 Q T 7 5 K 8 6 4 3 2 K Q 8 4 3 T 5 A J 9 7 6 2 K 8 A J 5 4 3 9 2 Q T 7 6 2N-(P)-3C-(P) 4D-(P)-? 29. K Q J A 9 7 4 2 T 8 6 5 3 A Q 6 K J 3 5 2 T 9 8 7 4 A K T 3 J 8 7 6 2 Q 9 4 5 K J 3 Q T 4 A 9 7 5 2 8 6 2N-(P)-3S-(P) 3N-(P)-P-(P) 30. A 8 6 3 Q 9 5 4 J T 2 K 7 A K T 9 8 6 5 3 7 Q J 4 2 A K J 6 9 3 7 5 2 Q T 8 4 A 6 3 7 K Q T 8 5 4 J 9 2 2N-(P)-3S-(P) 3N-(P)-4S-(P) 4N-(P)-5D+ 31. A J 7 K 5 4 T 9 2 Q 8 6 3 A Q J 9 T 8 6 4 5 K 7 3 2 A K 6 5 J 9 7 4 3 2 Q T 8 A 3 8 7 4 2 Q J T 6 5 K 9 2N-(P)-3S-(P) 3N-(P)-P-(P) 32. A K Q T 8 7 4 2 9 6 3 J 5 K 9 4 Q T 8 7 5 2 A 6 J 3 A K 9 7 8 J T 2 Q 6 5 4 3 A 9 5 J K Q 8 7 6 T 4 3 2 2N-(P)-3S-(P) 3N-(P)-4D-(P) 33. A Q 6 5 2 T 4 K J 8 9 7 3 A Q 7 K J T 8 4 9 6 5 3 2 A 7 J 5 6 4 3 K Q T 9 8 2 A K 7 T 9 8 6 Q J 3 2 5 4 2N-(P)-3N-(P) P-(P) 34. A J T Q 8 5 3 K 7 6 4 2 9 A 9 3 4 2 5 K Q J T 8 7 6 A J 4 K T 6 5 3 9 7 2 Q 8 A K Q 3 J 7 T 9 8 6 5 4 2 2N-(P)-3H-(P) 3S-(P)-4C-(P) 35. A Q 6 4 3 9 8 7 5 2 K J T A K 9 3 J T 7 2 Q 8 5 6 4 A K 8 J T 3 2 7 5 4 Q 9 6 K 9 2 Q 6 3 J 7 A T 8 5 4 2N-(P)-3C-(P) 3D-(P)-3H-(P) 3S-(P)-4C-(P) 36. A K 6 5 Q 9 8 7 4 3 2 J T A K 8 7 J 9 2 5 Q T 6 4 3 8 2 Q J T 7 5 A K 4 3 9 6 A K Q J 7 2 T 6 4 9 8 5 3 2N-(P)-3H-(P) 4C+ 37. Q 2 9 4 A T 8 6 5 K J 7 3 A K Q 7 6 5 3 2 J T 8 4 9 A K 8 9 6 5 4 J 3 2 Q T 7 K Q 9 6 5 J 8 A T 7 4 3 2 2N-(P)-3C-(P) 3H-(P)-3S-(P) 3N-(P)-? 38. A K Q T 8 7 6 5 3 J 9 4 2 A Q T 2 9 K J 7 5 3 8 6 4 A J 4 2 K T 6 9 8 Q 7 5 3 A J 2 9 3 T 8 5 K Q 7 6 4 2N-(P)-3C-(P) 3H-(P)-3S-(P) 4C+ 39. K 7 6 - A Q J 9 2 T 8 5 4 3 A K Q 7 J 3 T 9 8 4 6 5 2 Q 9 2 T 8 3 A K 6 J 7 5 4 A K Q J 9 8 7 6 5 3 2 T 4 2N-(P)-3C-(P) 3D-(P)-3H-(P) 3S-(P)-4C-(P) 40. A T 4 2 K Q J 9 8 7 6 5 3 A K Q 4 3 J 7 6 5 T 9 8 2 A J 2 T 8 3 K Q 7 6 5 9 4 K Q T 9 5 4 8 3 A J 7 6 2 2N-(P)-3D-(P) 3S-(P)-4C-(P) 41. A K 5 T 8 7 4 Q 9 2 J 6 3 A J T Q 8 4 K 7 2 9 6 5 3 K Q J 9 6 4 2 A T 8 5 7 3 A Q 9 6 4 T 8 5 3 K J 7 2 2N-(P)-3C-(P) 3D-(P)-4C-(P) 42. A K Q T 8 6 5 4 7 J 9 3 2 A K 8 7 Q 3 2 T 9 4 J 6 5 K J 9 7 2 A 8 3 Q T 6 5 4 K 7 6 4 A 3 Q J T 9 8 5 2 2N-(P)-3D-(P) 3S-(P)-4S-(P) 6C-(P)-P-(P) 43. A 9 4 K Q T 7 J 6 5 3 2 8 A T 6 5 J 4 3 Q 2 K 9 8 7 A K J T 7 9 8 6 2 Q 5 4 3 A K 3 Q J 6 2 9 7 T 8 5 4 2N-(P)-3H-(P) 3S-(P)-4C-(P) 44. A J 4 T 3 K 7 Q 9 8 6 5 2 A K 4 T 9 8 6 3 Q J 5 7 2 A 8 7 6 T 5 2 K Q J 9 4 3 A Q J K 7 3 T 8 6 9 5 4 2 2N-(P)-3D-(P) 3H-(P)-4H-(P) 45. 6 3 A T 5 2 8 4 K Q J 9 7 A K 7 6 9 8 5 2 T Q J 4 3 A K T 6 8 7 3 J 5 4 2 Q 9 A K Q 6 5 T 9 8 7 4 3 J 2 2N-(P)-3N-(P) P-(P) 46. A K Q 9 J 5 2 8 7 6 4 3 T A K Q 8 J 9 2 3 T 7 6 5 4 Q J 4 K T 8 3 2 9 7 6 A 5 Q 9 T 7 8 6 4 2 A K J 5 3 2N-(P)-3H-(P) 4C+ 47. A J 6 K 9 7 4 3 2 Q T 8 5 A K 2 4 T 9 6 3 Q J 8 7 5 A Q 6 4 K 5 3 J T 9 8 7 2 K Q 2 A 7 3 J 8 6 5 4 T 9 2N-(P)-3D-(P) 3H-(P)-3N-(P) P-(P) 48. K Q J 7 8 6 5 A T 3 9 4 2 A 7 T 8 6 5 K Q 9 2 J 4 3 A K J T 8 5 3 Q 9 7 6 4 2 A J 5 T 7 2 K Q 9 8 6 4 3 2N-(P)-3C-(P) 3S-(P)-4H-(P) 49. K Q 7 6 T 9 8 5 2 4 3 A J 9 7 4 K 8 6 3 A Q J T 5 2 A K Q J T 8 7 5 3 9 6 4 2 A K Q 6 5 J 9 7 3 2 T 8 4 2N-(P)-4C-(P) 50. A K T 8 4 2 J 5 3 Q 9 7 6 A K Q 7 4 J 3 T 8 6 5 2 9 A 7 2 T 4 3 9 K Q J 8 6 5 Q J 8 T 5 4 2 K 9 7 3 A 6 2N-(P)-3C-(P) 4C-(P)-? 51. A Q T 4 7 J 9 8 2 K 6 5 3 K J 8 Q T 5 4 2 9 6 A 7 3 A 8 K Q 9 5 4 T 7 3 2 J 6 A K Q 2 8 5 J 6 3 T 9 7 4 2N-(P)-3H-(P) 4C+ 52. A K 2 Q T J 9 7 8 6 5 4 3 K J 4 A 9 8 6 Q 7 2 T 5 3 A J 4 Q 5 3 9 7 6 K T 8 2 A Q J T 8 5 3 2 K 9 7 6 4 2N-(P)-3N-(P) P-(P) 53. A Q J 8 7 5 2 T 9 6 3 K 4 A Q J K 6 3 8 4 T 9 7 5 2 A K J 8 3 - Q 9 6 4 2 T 7 5 J 7 K Q T 9 8 2 6 4 A 5 3 2N-(P)-3H-(P) 3S-(P)-3N-(P) P-(P) 54. A K Q 5 7 3 J T 9 8 6 4 2 K J 3 A Q 6 5 2 T 9 8 7 4 - A Q 7 K 8 3 T 9 6 J 5 4 2 A 9 7 4 T 6 5 3 K 8 2 Q J 2N-(P)-3D-(P) 3H-(P)-? 55. A K Q J 8 5 T 9 3 2 7 6 4 A 6 J 8 7 5 4 Q T 9 K 3 2 K Q 5 9 8 2 A J T 6 7 4 3 A 4 2 K 9 7 6 Q J T 8 5 3 2N-(P)-3C-(P) 4D-(P)-? 56. A K Q 7 6 5 4 T 3 2 J 9 8 Q 3 A K 9 6 8 7 5 J T 4 2 A Q 9 4 J 7 5 3 2 K T 8 6 K Q J 7 3 T 6 5 4 A 2 9 8 2N-(P)-3C-(P) 3N-(P)-P-(P) 57. A K 8 2 Q T 6 5 J 9 7 4 3 A K Q 3 J 9 5 T 8 7 4 2 6 A 3 2 K T 5 4 Q 9 7 6 J 8 K 4 T 8 7 5 Q J A 9 6 3 2 2N-(P)-3D-(P) 3S-(P)-4C-(P) 58. A Q J T 8 7 4 3 6 K 9 5 2 A 7 3 8 4 2 K 9 6 Q J T 5 A K 6 2 8 4 T 9 5 Q J 7 3 K Q J 7 A 3 T 9 8 6 4 2 5 2N-(P)-3D-(P) 3H-(P)-3N-(P) P-(P) 59. A J 9 6 2 Q 8 5 K 7 4 3 T A Q 2 T 9 7 K J 4 3 8 6 5 K Q 3 J 9 8 6 4 T A 7 5 2 A K T 3 J 9 8 2 Q 7 6 5 4 2N-(P)-3C-(P) 4D-(P)-? 60. A Q 5 T 2 J 8 7 3 K 9 6 4 A 3 K T 9 8 J 7 6 4 2 Q 5 A Q 9 5 4 K T 7 3 2 J 8 6 A K 6 4 3 T 9 Q J 8 7 5 2 2N-(P)-3C-(P) 3N-(P)-P-(P) 61. A K Q 7 6 5 4 2 3 J T 9 8 A 8 7 2 T 4 K 6 3 Q J 9 5 Q J 3 A K 6 5 2 T 9 7 4 8 A K 6 5 Q J 9 8 3 T 7 4 2 2N-(P)-3D-(P) 3S-(P)-? 62. A K T J 7 5 3 2 9 4 Q 8 6 K Q J 8 T 9 7 3 A 6 5 4 2 A K 9 5 Q 4 3 T 8 2 J 7 6 K 3 9 7 4 A Q J 8 6 2 T 5 2N-(P)-4S-(P) 4N-(P)-5D+ 63. A J 8 Q T 7 K 6 2 9 5 4 3 K Q 8 6 9 7 2 T 4 A J 5 3 A 7 K J 9 8 5 Q T 4 3 6 2 A K Q 8 7 5 9 6 3 2 J T 4 2N-(P)-3S-(P) 3N-(P)-P-(P) 64. K Q J T 7 A 8 5 2 9 6 4 3 A T 5 4 K 9 7 3 2 8 6 Q J K J 9 A 6 Q 8 5 3 2 T 7 4 A K Q 7 5 4 2 J T 9 8 6 3 2N-(P)-3H-(P) 3S-(P)-4H-(P) 65. A J T 2 Q 7 8 6 4 3 K 9 5 A 9 8 T 7 K J 6 3 Q 5 4 2 A K Q J 9 5 4 2 T 6 8 7 3 A 7 K T 8 4 2 J 9 5 Q 6 3 2N-(P)-3C-(P) 3D-(P)-3H-(P) 4C+ 66. A K 9 8 T 5 4 3 2 J 7 6 Q A K Q T 3 J 6 5 2 9 8 7 4 A K 7 J 9 6 Q 8 4 T 5 3 2 8 5 4 Q 9 6 J 3 2 A K T 7 2N-(P)-3C-(P) 3D-(P)-3S-(P) 3N-(P)-P-(P) or, better, 2N-(P)-3N-(P) P-(P) 67. A K Q T 2 9 8 6 J 7 5 4 3 A J 9 6 8 7 4 3 K 5 2 Q T K J T 6 A 4 8 7 5 3 Q 9 2 A K 4 J T 7 6 Q 9 8 5 3 2 2N-(P)-3N-(P) P-(P) 68. A K J 9 3 Q 8 6 4 T 2 7 5 K 4 A J T 8 7 5 3 Q 9 6 2 A Q 3 K J 9 7 6 5 2 T 8 4 A Q 2 3 K J 8 7 T 9 6 5 4 2N-(P)-4C-(P) 69. A Q J 8 K T 6 2 9 5 4 7 3 A K Q 8 7 4 3 6 2 J T 9 5 A 7 6 J 8 4 Q T 3 2 K 9 5 K Q 7 2 A T 9 5 4 J 8 6 3 2N-(P)-3S-(P) 3N-(P)-P-(P) 70. A K Q 6 3 9 7 8 4 J T 5 2 K 7 A Q 9 5 J T 8 3 2 6 4 K J 5 9 3 Q 6 2 A T 8 7 4 A K 2 Q T 8 7 5 9 6 4 J 3 2N-(P)-3D-(P) 3N-(P)-P-(P) 71. A 5 2 T 8 3 K 6 4 Q J 9 7 A K 3 T 9 7 Q J 5 2 8 6 4 K Q T 6 4 A 9 5 J 8 7 3 2 A Q J 7 4 K T 5 3 9 8 6 2 2N-(P)-3C-(P) 3D-(P)-3S-(P) 3N-(P)-4C-(P) 72. K Q T 7 A 4 2 J 3 9 8 6 5 A K 4 J 7 6 5 3 2 T 9 8 Q A K J 8 - 9 7 6 5 4 2 Q T 3 Q J K 9 5 2 T 3 A 8 7 6 4 2N-(P)-3D-(P) 3H-(P)-3N-(P) P-(P) 73. 6 4 9 7 2 Q J 5 A K T 8 3 A K 2 8 6 4 Q J T 7 5 3 9 A K 5 2 J T 4 9 6 Q 8 7 3 A K Q 9 J 6 4 3 7 5 T 8 2 2N-(P)-3C-(P) 3H-(P)-3S-(P) 4C+ 74. A Q 4 2 K T 7 6 J 9 3 8 5 J 9 K T 5 3 A Q 7 6 8 4 2 A K 5 3 Q J T 9 7 4 8 6 2 A K Q 9 8 4 6 5 J T 7 3 2 2N-(P)-3C-(P) 3S-(P)-? 75. A K Q J 3 7 2 T 9 8 4 6 5 A T 2 Q 8 5 4 K J 9 7 6 3 K 7 2 T 5 A Q 3 J 9 8 6 4 A Q J 7 6 4 2 9 3 K T 8 5 2N-(P)-3C-(P) 4D-(P)-? 76. A J 7 5 2 K 9 6 3 Q T 8 4 A Q 3 2 9 7 5 K J 6 4 T 8 K 7 5 2 Q 8 4 6 3 A J T 9 A K Q 8 6 5 2 T 9 4 J 7 3 2N-(P)-3C-(P) 3H-(P)-3S-(P) 4C+ 77. K J 4 A Q T 3 9 8 5 7 6 2 A Q 4 K 8 5 3 T 7 6 J 9 2 A K Q J 7 9 8 4 T 6 5 3 2 K 9 8 7 5 3 2 A Q T 4 J 6 2N-(P)-3N-(P) P-(P) 78. A K Q 9 6 5 J 7 4 3 2 T 8 A Q 7 4 J 9 2 T 6 3 K 8 5 A Q 9 7 6 4 2 J 5 3 K T 8 A 9 7 5 K T Q 8 J 6 4 3 2 2N-(P)-3C-(P) 3H-(P)-3N-(P) P-(P) 79. A K Q 9 J T 2 7 5 3 8 6 4 A 7 J 4 Q 9 8 2 K T 6 5 3 Q 7 3 6 5 K J T 8 4 A 9 2 A K J 2 T 9 8 6 4 3 Q 7 5 2N-(P)-3C-(P) 3S-(P)-4H-(P) 80. A 9 K Q J T 7 5 4 3 6 8 2 A Q J 8 6 - K 9 5 4 3 T 7 2 A Q J 8 2 K T 6 3 9 7 5 4 K Q 7 J 4 2 A 9 6 T 8 5 3 2N-(P)-3D-(P) 4C+ 81. A J 2 K 9 7 6 4 8 Q T 5 3 A K 6 3 2 J T 7 Q 9 8 5 4 A J 6 5 3 2 K Q T 8 7 9 4 A Q 9 7 6 5 3 K J 4 2 T 8 2N-(P)-3D-(P) 3N-(P)-? 82. A K 7 9 8 J 6 5 2 Q T 4 3 A K T Q 8 7 6 4 3 2 J 9 5 K T 6 3 7 A Q 8 2 J 9 5 4 A Q 3 T 9 8 7 6 5 4 K J 2 2N-(P)-3C-(P) 3D-(P)-3H-(P) 3N-(P)-4C-(P) 83. A Q 6 J 9 4 3 K 7 T 8 5 2 A K J 2 Q 5 4 T 9 6 8 7 3 A K Q 8 J 9 6 4 3 7 2 T 5 T 4 5 K Q 8 6 3 2 A J 9 7 2N-(P)-3D-(P) 3S-(P)-4S-(P) 4N-(P)-5D+ 84. A K 9 J 4 Q 8 7 5 2 T 6 3 K 9 J 8 6 3 2 5 4 A Q T 7 K Q J T 8 A 7 5 4 9 6 3 2 A K T 9 4 Q J 8 3 2 7 6 5 2N-(P)-3H-(P) 3S-(P)-4C-(P) 85. K Q 3 T 6 2 A 5 J 9 8 7 4 K Q T A 8 7 4 6 5 3 2 J 9 A Q 2 J T K 9 7 8 6 5 4 3 A K 9 6 Q 8 5 2 J T 4 3 7 2N-(P)-3C-(P) 3D-(P)-3S-(P) 3N-(P)-4C-(P) 86. A Q T J 9 K 8 7 5 3 6 4 2 A J 4 K Q 9 7 6 5 T 8 3 2 A Q 4 K T 6 3 2 - J 9 8 7 5 A Q T 6 J 9 5 3 K 8 4 2 7 2N-(P)-3C-(P) 3D-(P)-3H-(P) 3N-(P)-4C-(P) 87. K Q 8 A 9 6 5 J T 4 3 7 2 A K 4 Q J 6 3 8 T 9 7 5 2 A J 7 Q 8 5 4 K T 6 3 9 2 A Q 8 6 5 K J T 4 9 7 3 2 2N-(P)-3C-(P) 3D-(P)-3H-(P) 3N-(P)-4C-(P) 88. K T 4 J 9 2 Q 8 7 6 5 3 A A K 6 5 T 4 3 2 8 Q J 9 7 A K T 7 4 2 9 8 6 5 3 Q J K Q J 6 8 2 7 A T 9 5 4 3 2N-(P)-3H-(P) 3S-(P)-4C-(P) 89. A K Q 9 2 7 6 8 4 J T 5 3 A 3 J T 6 2 Q 9 7 5 4 K 8 K Q 2 T 9 8 7 6 3 A J 5 4 A J 3 K 7 4 2 Q T 5 9 8 6 2N-(P)-3D-(P) 3N-(P)-P-(P) 90. A K Q 2 J 8 7 6 4 3 T 9 5 A Q K 6 5 4 J 9 8 7 2 T 3 A J 7 9 6 4 K Q 5 2 T 8 3 K 7 5 4 A Q J 6 T 9 8 3 2 2N-(P)-3C-(P) 3S-(P)-3N-(P) P-(P) 91. A K J 5 T 7 6 9 8 3 2 Q 4 K 7 A Q 6 3 J 9 5 2 T 8 4 K Q 6 4 T 9 7 3 A J 8 5 2 A K 8 T 7 5 J 6 3 2 Q 9 4 2N-(P)-3C-(P) 3S-(P)-? 92. A K J T 6 3 2 9 Q 8 7 5 4 K Q 7 5 J 6 A T 9 3 8 4 2 A Q J T 8 6 K 7 4 2 9 5 3 K 2 A Q T 8 6 J 9 7 5 4 3 2N-(P)-3C-(P) 3D-(P)-3S-(P) 4C+ 93. A T 9 J 7 2 K Q 8 6 5 4 3 A K 8 Q J 4 3 6 5 T 9 7 2 A Q J 5 2 9 7 6 K T 8 4 3 A J T 2 K Q 9 7 8 6 5 4 3 - 2N-(P)-3S-(P) 3N-(P)-P-(P) 94. A K T Q J 5 2 8 3 9 7 6 4 A K Q 5 4 2 T 9 8 7 J 6 3 A 7 6 4 Q J 8 5 3 2 K T 9 K 9 Q 7 6 3 2 J T 4 A 8 5 2N-(P)-P-(P) 95. K 8 7 4 J 9 5 2 Q 6 A T 3 A K J 9 6 4 3 2 Q T 8 7 5 A K Q T 6 4 2 9 7 5 3 J 8 A 3 2 - T 8 7 6 5 4 K Q J 9 2N-(P)-3N-(P) P-(P) 96. K J 4 3 A Q 9 8 7 6 5 2 T A K Q 9 8 3 J T 6 7 5 4 2 A K 4 Q 8 3 2 T 9 J 7 6 5 Q J 5 A 4 T 9 8 3 K 7 6 2 2N-(P)-P-(P) 97. J 9 2 Q T 7 4 8 6 3 A K 5 A K J 2 8 5 Q T 9 7 4 6 3 A J 4 T 8 6 5 2 K Q 9 7 3 A K Q T 9 2 J 8 6 3 7 5 4 2N-(P)-3C-(P) 3D-(P)-3S-(P) 4C+ 98. K 3 2 Q J 8 6 A 9 7 4 T 5 A 8 9 5 3 2 K T 7 6 Q J 4 A K Q 9 2 6 3 J 7 T 8 5 4 A K 5 T 6 4 Q 8 2 J 9 7 3 2N-(P)-3C-(P) 3N-(P)-4C-(P) 99. A K 9 8 Q 7 5 4 J 6 T 3 2 A Q 8 J K 7 6 5 4 2 T 9 3 A K 8 3 Q J 5 2 T 9 6 4 7 K 3 A J 6 2 Q T 9 8 7 5 4 2N-(P)-3D-(P) 3H-(P)-? 100. A K T Q J 9 8 7 5 3 4 6 2 8 6 A J T 7 4 3 K Q 9 5 2 A K Q J T 9 6 5 3 8 7 4 2 - A Q T 7 - J 6 5 K 9 8 4 3 2 2N-(P)-3D-(P) 3N-(P)-P-(P) Generated 164853 hands Produced 100 hands Initial random seed 1618687117 Time needed 0.151 sec [not finished] Quote Link to comment Share on other sites More sharing options...
dokoko Posted July 2, 2020 Report Share Posted July 2, 2020 I like to play that 2NT-3red-3M denies a fit. Together with 2-under-transfers at the 4-level for slammish 1-suiters you now don't need responder's rebids in a new suit as cuebid and can use it to search for a minor suit fit (natural or otherwise). You lose the ability to play 3M with a fit which is no great loss when 2NT shows at least 20 or so. Mats Nilsland in his recent book (available for free as pdf from his site AFAIK) even recommends breaking the transfer to 3♠ without a fit. Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.